用于预测神经影像数据的深度学习算法在各种应用中显示出巨大的希望。先前的工作表明,利用数据的3D结构的深度学习模型可以在几个学习任务上胜过标准机器学习。但是,该领域的大多数先前研究都集中在成年人的神经影像学数据上。在一项大型纵向发展研究的青少年大脑和认知发展(ABCD)数据集中,我们检查了结构性MRI数据,以预测性别并确定与性别相关的大脑结构变化。结果表明,性别预测准确性异常高(> 97%),训练时期> 200,并且这种准确性随着年龄的增长而增加。大脑区域被确定为研究的任务中最歧视性的,包括主要的额叶区域和颞叶。当评估年龄增加两年的性别预测变化时,揭示了一组更广泛的视觉,扣带和孤立区域。我们的发现表明,即使在较小的年龄范围内,也显示出与性别相关的结构变化模式。这表明,通过查看这些变化与不同的行为和环境因素如何相关,可以研究青春期大脑如何变化。
translated by 谷歌翻译
对新生儿的运动和姿势评估使经验丰富的儿科医生可以预测神经发育障碍,从而可以早期干预相关疾病。但是,大多数用于人类姿势估计方法的最新AI方法都集中在成年人上,缺乏公开基准的婴儿姿势估计。在本文中,我们通过提出婴儿姿势数据集和深度聚合视觉变压器来填补这一空白,以进行人姿势估计,该姿势估计引入了一个快速训练的完整变压器框架,而无需使用卷积操作在早期阶段提取功能。它将变压器 + MLP概括为特征图内的高分辨率深层聚集,从而在不同视力级别之间实现信息融合。我们在可可姿势数据集上预先训练,并将其应用于新发布的大规模婴儿姿势估计数据集。结果表明,凝集可以有效地学习不同分辨率之间的多尺度特征,并显着提高婴儿姿势估计的性能。我们表明,在婴儿姿势估计数据集中,凝集优于混合模型hrformer和tokenpose。此外,在可可瓣姿势估计上,我们的凝集表现优于0.8 AP。我们的代码可在github.com/szar-lab/aggpose上获得。
translated by 谷歌翻译
Data scarcity is a notable problem, especially in the medical domain, due to patient data laws. Therefore, efficient Pre-Training techniques could help in combating this problem. In this paper, we demonstrate that a model trained on the time direction of functional neuro-imaging data could help in any downstream task, for example, classifying diseases from healthy controls in fMRI data. We train a Deep Neural Network on Independent components derived from fMRI data using the Independent component analysis (ICA) technique. It learns time direction in the ICA-based data. This pre-trained model is further trained to classify brain disorders in different datasets. Through various experiments, we have shown that learning time direction helps a model learn some causal relation in fMRI data that helps in faster convergence, and consequently, the model generalizes well in downstream classification tasks even with fewer data records.
translated by 谷歌翻译
Extremely large-scale massive MIMO (XL-MIMO) has been reviewed as a promising technology for future wireless communications. The deployment of XL-MIMO, especially at high-frequency bands, leads to users being located in the near-field region instead of the conventional far-field. This letter proposes efficient model-based deep learning algorithms for estimating the near-field wireless channel of XL-MIMO communications. In particular, we first formulate the XL-MIMO near-field channel estimation task as a compressed sensing problem using the spatial gridding-based sparsifying dictionary, and then solve the resulting problem by applying the Learning Iterative Shrinkage and Thresholding Algorithm (LISTA). Due to the near-field characteristic, the spatial gridding-based sparsifying dictionary may result in low channel estimation accuracy and a heavy computational burden. To address this issue, we further propose a new sparsifying dictionary learning-LISTA (SDL-LISTA) algorithm that formulates the sparsifying dictionary as a neural network layer and embeds it into LISTA neural network. The numerical results show that our proposed algorithms outperform non-learning benchmark schemes, and SDL-LISTA achieves better performance than LISTA with ten times atoms reduction.
translated by 谷歌翻译
功能连接(FC)研究已经证明了通过FMRI相关矩阵的无向加权图来研究脑及其疾病的总体价值。然而,与FC的大多数工作都取决于连接的方式,还取决于FC矩阵的手册后HOC分析。在这项工作中,我们提出了一个深入的学习架构Braingnn,它可以学习连接结构,作为学习对象的一部分。它同时将图形神经网络应用于此学习图,并学习选择对预测任务重要的大脑区域的稀疏子集。我们展示了在精神分裂症FMRI数据集中的模型的最先进的分类性能,并证明了内省如何导致紊乱的相关结果。模型学到的图表表现出强烈的阶级歧视,相关地区的稀疏子集与精神分裂症文献一致。
translated by 谷歌翻译
发现不同的特征和他们从数据的关系可以帮助我们揭示各种任务至关重要的宝贵知识,例如分类。在神经影像体中,这些特征可以有助于理解,分类和可能预防大脑疾病。高度性能的模型内省过度分辨深度学习(DL)模型可以帮助找到这些特征和关系。然而,为了实现高性能等级DL模型,需要许多标记的训练样本($ N $)很少可用。本文介绍了一种涉及图形卷积/神经网络(GCNS / GNN)的预训练方法,基于输入样本的两个高级嵌入之间的相互信息。许多最近提出的预训练方法预先列出了诸多可能的架构网络之一。由于几乎每个DL模型都是多个网络的集合,因此我们从模型的两个不同网络中获取我们的高级嵌入式 - A卷积和图形网络 - 。学习的高级图潜在表示有助于提高下游图形分类任务的性能,并绕过需要大量标记的数据样本。我们将方法应用于神经影像学数据集,用于将受试者分类为健康对照(HC)和精神分裂症(SZ)组。我们的实验表明,预先训练的模型显着优于非预先训练的模型,并且需要50美元的数据进行类似的性能。
translated by 谷歌翻译
多变量动力过程通常可以通过表示每个单独的时间序列的组件之间的加权连接图直观地描述。甚至如Pearson相关矩阵的简单表示,如Pearson相关矩阵,也可以是脑成像文献中所示的信息和预测。但是,有一种共识期望,强大的图形神经网络(GNNS)应该在类似的环境中更好地执行。在这项工作中,我们提出了一个比深谷深度浅的模型,但在脑成像应用中的预测准确性上才能表达它们。我们的模型学习单个时间序列的自回归结构,并通过以端到端的方式通过自我关注机制来估计学习的表示之间的指示连接图。模型的监督培训作为患者和控制之间的分类器导致模型,该模型产生指示的连接图,并突出显示每个受试者预测的时间序列的组件。我们展示了我们对功能性神经影像数据集分类精神分裂症患者和对照的结果。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译